Tutorial Binario

Aprende Binario con nosotros ¡¡

5143 en hexadecimal

El numero Decimal 5143 (10 en hexadecimal es 1417(16

Esconder


5143 en Hexadecimal

Para pasar un numero al sistema hexadecimal lo tenemos que dividir por 16 e ir quedandonos con el resto.

1º Dividir iterativamente el numero entre 16 hasta que lleguemos a uno e ir quedándonos con los restos. (si son mayores que 10 sustituimos por la letra adecuada.)

5143 entre 16 sobra 7
321 entre 16 sobra 1
20 entre 16 sobra 4
1 entre 16 sobra 1

2º una vez llegados al uno empezar desde abajo a tomar los restos. El ultimo resto es el bit mas significativo , esto es el bit más a la izquierda.


5143 (10 en hexadecimal es 1417 (16 .




Números cercanos a 5143

5123 en hexadecimal
5124 en hexadecimal
5125 en hexadecimal
5126 en hexadecimal
5127 en hexadecimal
5128 en hexadecimal
5129 en hexadecimal
5130 en hexadecimal
5131 en hexadecimal
5132 en hexadecimal
5133 en hexadecimal
5134 en hexadecimal
5135 en hexadecimal
5136 en hexadecimal
5137 en hexadecimal
5138 en hexadecimal
5139 en hexadecimal
5140 en hexadecimal
5141 en hexadecimal
5142 en hexadecimal
5143 en hexadecimal
5144 en hexadecimal
5145 en hexadecimal
5146 en hexadecimal
5147 en hexadecimal
5148 en hexadecimal
5149 en hexadecimal
5150 en hexadecimal
5151 en hexadecimal
5152 en hexadecimal
5153 en hexadecimal
5154 en hexadecimal
5155 en hexadecimal
5156 en hexadecimal
5157 en hexadecimal
5158 en hexadecimal
5159 en hexadecimal
5160 en hexadecimal
5161 en hexadecimal
5162 en hexadecimal

Tutorial Calculadora Decimal hexadecimal

En este tutorial vamos a aprender todo sobre Calculadora Decimal hexadecimal


El Sistema Hexadecimal se basa como en el decimal en la posición de sus cifras por ejemplo el numero decimal.

La gran diferencia es que como tiene 16 simbolos usamos los simbolos de letras mayusculas para los que son mayores que el diez

asi los simbolos disponibles en hexadecimal son {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}

Para pasar de decimal a Hexadecimal debemos seguir los siguientes pasos

1º Dividir iterativamente el numero entre16 hasta que lleguemos a uno e ir quedándonos con los restos. (si son mayores que 10 sustituimos por la letra adecuada.)

2º una vez llegados al uno empezar desde abajo a tomar los restos. El ultimo resto es el bit mas significativo , esto es el bit más a la izquierda.

3º el valor resultante sera el equivalente binario del numero decimal

Por ejemplo para el numero 3212

1) Dividimos iterativamente

3212 entre 16 = 200 y sobra 12 que equivale a C(16

200 entre 16 = 12 y sobra 8 que equivale a 8 (16

12 entre 16 = 0 y sobra 12 y sobra 12 que equivale a C(16

2) Tomamos los valores de los restos hacia arriba desde abajo

C8C(16

3) El numero hexadecimal aparece es el siguiente 3212(10 = C8C(16

Más info en Wikipedia Sistema Hexadecimal